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Maryland has applied considerable effort to realize a newly articulated vision: Maryland will be 
a great place for biking and walking that safely connects people of all ages and abilities to 
life’s opportunities. From Mountain Maryland to the Eastern Shore and from expressways to 
walkable communities, safety on Maryland roadways is essential to connecting all Marylanders to 
recreational, economic, and social opportunities. To realize this vision pedestrian/bicycle deaths 
and severe injuries must be minimized and potentially eliminated. A crucial step in fostering a 
safer environment for pedestrians, bicycles, and scooters is to better understand current 
pedestrian/bicycle/scooter volumes and their exposure to roadway safety risks. Proper data, 
analytics, and visualization tools are imperative to improve situational awareness. 
 
The safety exposure for road users outside of the vehicle is pivotal for appropriate risk 
characterization and for safety-related decision-making. However, quality pedestrian/bicycle 
exposure data is often regarded as a missing piece of information in safety analyses. The current 
state of the practice uses manual and automated count data, census data, travel surveys, and land 
use information from a single point in time to understand and estimate pedestrian and bicycle 
volumes (see next section for state of the practice). Studies have demonstrated that exposure to 
risk plays an important role in helping agencies better understand the cause of crashes and incident 
severity; however, it is difficult to accurately identify pedestrian/bicycle movements and then 
prioritize high-risk locations due to the lack of exposure data (FHWA, 2017). In fact, without 
pedestrian volumes as a measure of exposure, crash models are undermined with reduced 
goodness-of-fit, biased parameter estimates, and incorrect inferences (Xie et al., 2018). The focus 
of this project is to address the research need and data gap in a reliable, comprehensive, and up-
to-date information source on pedestrian/bicycle exposure, and to convey such information in a 
useable platform. The project team aimed to answer the following questions: 

• Can probe data be dependably converted to the density of vulnerable user movement in a 
dynamic platform across time and at the link level? 

• Can crash data be parsed enough to separate modes of transportation and mapped over the 
density of roadway use? 

 
 
 
States and jurisdictions are trying to address vulnerable user risk exposure challenges by adopting 
count data and supplementary information to analyze pedestrian/bicycle volumes at critical 
locations. However, there are explicit drawbacks to this approach: 1) the data sources are limited 
and expensive to collect; 2) the spatial and temporal coverage of the data is limited; 3) running and 
maintaining such models require technology transfer and staff support.  
 

Table 1. Examples of Pedestrian/Bicycle Safety Exposure Studies 
State Coverage Data Source(s) Measure of Exposure 
Connecticut (Qin and Ivan, 
2001) 

Rural areas in 
Connecticut 

Manual counts; population 
and land use data 

Weekly pedestrian 
crossing volume 

California (Raford and 
Ragland, 2004) 

Oakland Manual counts; census 
data 

Average annual 
pedestrian volume 

California (Schneider et al., 
2012; Schneider et al., 2013) 

San Francisco Manual counts; automated 
counts 

Number of pedestrian 
crossings 

1. PROBLEM STATEMENT AND RESEARCH QUESTIONS 

2. STATE OF THE PRACTICE GAPS 
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District of Columbia (Molino 
et al., 2009; Molino et al., 2012) 

Washington, 
D.C. 

Manual counts; crossing 
distances 

Pedestrian miles traveled 

Minnesota (Hankey and 
Lindsey, 2016) 

Minneapolis Manual counts; census and 
land use data 

Bicycle and pedestrian 
volumes 

Florida (Radwan et al., 2016) FL Statewide Counts; population; 
vehicle ADT 

Pedestrian miles crossed 
per entering vehicle 

Michigan (Cai et al., 2018) MI Statewide Census; statewide travel 
survey; land-use data 

Vehicle traffic and 
pedestrian volumes 

California (Griswold et al., 
2019) 

CA Statewide Counts; network and land 
use variables; census data 

Annual pedestrian 
crossing volume 

 
Most of the above studies applied statistical models to estimate facility-level volumes at 
intersections and pedestrian network segments based on a limited spatial and temporal scope of 
pedestrian and bicycle counts. The typical coverage of such data and models is at the city level. 
Until recently, statewide analyses of pedestrian exposure have not been seen in the literature (e.g., 
Cai et al., 2018; Griswold et al., 2019). A safety data tool that comprehensively covers a large-
scale geographical area with detailed temporal representation is rarely seen in literature, and only 
a handful of commercial products are available on the market. 
 
 
To reduce several of the previously mentioned limitations, this project leverages mobile device 
location data and integrates it with other data sources into a data-driven analytical and visualization 
dashboard for transportation safety. Compared to the current state of the practice that relies on 
surveys and manual/automatic counts, this emerging big-data source has significant advantages: 
• it no longer requires costly and time-consuming surveys or counts collections; 
• mobile device location data draws evidence from a much larger sample, covering over 40% of 

the entire U.S. population;  
• unlike cross-sectional data (i.e., data taken only on one or a few days of the year), this data 

provides a continuous time series of pedestrian and bicycle movements (we proposed in this 
project to analyze a one-year time period) and covers the entire Maryland roadway network, 
including rural areas where traditional pedestrian/bicycle data is lacking; 

• the availability of the data source is in the entire U.S., not just Maryland, which would enable 
a fast and cost-effective transfer of this project to other states and jurisdictions throughout the 
nation. 

 
The final product of this project is a dashboard (https://mti.umd.edu/sdi) that reports safety 
exposures and crash information for pedestrians, bicycles, and e-scooters at a microscopic level 
and is available to all practitioners across various levels of government in Maryland and nationally. 
Details of the technical process to achieve this deliverable are provided in the following sections. 
 
 
 
DATA SOURCES AND DATA ASSEMBLY 
The data assembly process forges a comprehensive and secure warehouse of vehicle, pedestrian, 
bicycle, and available e-scooter activity data based on location-based services, other transportation 
sector data available in Maryland, and pedestrian/bicycle-involved crash data records. This section 
summarizes these data sources. Note that the dashboard (https://mti.umd.edu/SDI) includes an in-
depth white paper on methodology under the “Methodologies” section. 

3. HOW THE DASHBOARD ADDRESSES THE KNOWLEDGE GAPS 

4. DATA SOURCES AND METHODOLOGICAL APPROACH 
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Mobile Device Location Data  
This is the principal data source leveraged in the project. Collected directly from individuals’ 
smartphones, this source of data collects location points whenever the mobile device users are 
using the location-based service of the devices. This data is collected continuously for each sample. 
Thus, individual-level mobility of the data sample could be inferred, including trips, travel times, 
departure times, speed profile of each trip, and adjacency to different transportation system 
infrastructure such as roadway network, transit stations, etc. With this level of detail, critical 
information concerning this project could be inferred, including travel modes (walking, biking, 
driving, etc.), travel routes/paths where walk/bike activities are observed, and the timing of each 
trip, etc. In full transparency, the Maryland Department of Transportation (MDOT) and the US 
DOT were never in contact with this data, nor will they have access to the data after this project. 
It was clearly outlined prior to the project start that this data would remain with the Maryland 
Transportation Institute (MTI) and not be shared due to privacy concerns. 
 
MTI maintains access to several major mobile device data sources that have wide and 
comprehensive coverage of mobile device location data internationally. It has developed big-data 
analytical algorithms that this project can leverage through ongoing parallel collaborations with 
the US DOT Federal Highway Administration (FHWA). MTI also has developed a series of 
validated data mining algorithms to turn sample data into individual trip analytics. This project 
utilizes mobile device location data collected in the year 2019 (Jan 1, 2019 – Dec 31, 2019). It 
should be noted that raw data and trip-level results are analyzed via the separate project effort and 
beyond the scope of this project. Within this study, only the aggregated mobility data at the 
intersection and link segment level is used and analyzed.  
 

Pedestrian and Bicycle Crash Data 
Crash records visualized and analyzed in the study are collected from MDOT State Highway 
Administration (SHA) and cover pedestrian and bicycle crashes that occurred in Maryland from 
2016-2019. Information has been aggregated at the link level and intersection level. For privacy 
protection, the project dashboard only highlights the centroids of links where the crashes occurred. 
For links that have reported crashes, the following statistics are provided: 
• Involved: including the total number of crashes that occurred on that particular roadway 

segment in 2016-2019, as well as number of bicyclists, number of pedestrians, number of e-
scooters, and number of vehicles involved in those crashes. 

• Severity: aggregated number of people by injury severity levels (i.e., property damage only; 
injury; and fatality). 

• More details: situational awareness for the most frequent movements of pedestrians, 
bicyclists, e-scooters, and vehicles involved in the crashes. 

 
E-Scooter Volume Data 
The project team has collected e-scooter data from the Baltimore City Department of 
Transportation. The project dashboard currently has one data layer displaying e-scooter volume 
records for Baltimore. The currently implemented data includes the average daily e-scooter volume 
on each roadway link in Baltimore City for October 2019. This project has demonstrated the 
feasibility to ingest and manage e-scooter volume data in the designed dashboard. Additional data 
for other time periods or other localities could be collected and hosted; however, for the purposes 
of this project access to that data was not available. 
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Additional Data for the Transportation System of Maryland 
To deliver a comprehensive data-driven tool, additional information was collected and integrated 
into the database to train, test, and validate the data analysis algorithms and crash prediction 
models, including: 
• Hourly vehicle and pedestrian/bicycle count data covering the entire year of 2019. 
• A multimodal transportation network and its associated network-level details are collected 

from OpenStreetMap (OSM). Moreover, its embedded point-of-interest (POI) information 
will help the team identify rich location and infrastructure information that are essential to 
supplement the identification of pedestrian and bicycle activities as well as the prediction of 
safety hotspots. 

 

Socio-demographics, Land Use Data, and other Supplementary Information 
To support the analyses of pedestrian/bicycle activities, exposures, and predictions of crash risks, 
the team also relies on additional information about socio-demographics and land use variables, 
including: 
• American Community Survey (ACS), an annual survey program conducted by the United 

States Census Bureau. Data collected through this survey provide information about the 
population (e.g., socioeconomic and sociodemographic characteristics, means of commuting 
to work) as well as housing (e.g., financial and physical characteristics for housing units) at 
many geographical scales. The 2019 five-year ACS estimates at the census block group have 
been used in this study as the source of socioeconomic and sociodemographic data in the 
development of pedestrian/bicyclist crash frequency models. 

• Smart Location Database (SLD) is a nationwide spatial dataset for the U.S. The SLD is a 
product of the U.S. Environmental Protection Agency (EPA)’s Smart Growth Program and is 
publicly available on the EPA web site. The latest version of this dataset is the SLD Version 
2.0, which was released in 2013 (EPA 2021). The SLD provides information on land use and 
built environment characteristics such as population and employment density, housing 
density, land use diversity, urban design attributes, destination accessibility, transit 
accessibility, transit service frequency, as well as socioeconomic and sociodemographic 
characteristics at the census block group level. These characteristics of SLD were employed 
in the project in examining the role of the land use and built environment attributes in 
modeling the frequency of pedestrian/bicyclist crashes. 

• Level of Traffic Stress (LTS) was calculated for each roadway segment and intersection, to 
quantify the traffic stress a road segment or intersection imposes on the bicyclist as a surrogate 
measure of pedestrian bicycle safety. The LTS for each link was calculated using the speed 
limit, number of lanes, bike lanes, authorized travel modes (vehicle, bicyclist, and pedestrian), 
and other road geometry information from the OSM data. The intersection LTS is calculated 
by averaging the LTS value for all approaches. LTS information has been provided via the 
project dashboard at the intersection and segment level. The LTS score also contributes to the 
crash frequency models. 

 

ANALYTICAL APPROACH OF USING MOBILE DEVICE LOCATION DATA 
Figure 1 shows the methodology flowchart of the dashboard. The project team estimated the 
vehicle and pedestrian bicycle volume at the link-level (i.e., roadway segment level) and 
intersection-level, leveraging a set of previously developed and validated algorithms made 
available via the USDOT Federal Highway Administration’s Exploratory Advanced Research 
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Program project entitled “Data analytics and modeling methods for tracking and predicting origin-
destination travel trends based on mobile device data.” 

 
Figure 1. Methodology flowchart 

 
Several key steps were taken in order to derive pedestrian and bicycle mobility data at each 
intersection and roadway segment: 
• First, we employed a state-of-the-practice data preprocessing to integrate and clean the mobile 

device location data; 
• The team then clustered location points into activity locations and identified home and work 

locations at the census block group (CBG) level to protect privacy; 
• Next, we applied previously developed and validated imputation algorithms to identify all 

trips from the cleaned data panel, including trip origin, destination, departure time, and arrival 
time. Most importantly, travel modes and routes were imputed so that pedestrian and bicycle 
activities can be inferred and aggregated to each intersection and roadway segment; 

• Lastly, postprocessing steps were taken to expand our sample to the entire population, validate 
our estimated volumes, and visualize the mobility data on a large-scale and interactive map-
based visualization platform embedded in the project dashboard.  

 
Data Processing 
Some common issues, such as unordered and duplicated records, need careful treatment before 
extracting any information from mobile device location data. The state-of-the-practice methods 
for raw data cleaning and quality control often include identifying and merging duplicate device 
observations, removing outliers, and checking on the obvious data consistency issues (e.g., devices 
with unreasonably high-speed readings). The data processing procedure taken by the research team 
is based on the four dimensions of data quality assessment: consistency, accuracy, completeness, 
and timeliness. More details are offered in Appendix A. 
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Trip Identification 
Trips are not initially included in any mobile device location data sources. Instead, location 
sightings are continuously generated while the sample device moves, stops, stays static, or starts a 
new trip. As a result, MTI developed a trip identification algorithm, which can detect which 
location sightings form a trip together. The first step is to sort device observations by time. The 
algorithm assigns a random ID to each trip it identifies. Many location points in the dataset may 
belong to no trips. The algorithm assigns “0” to the trip ID of these locations to tag them as static 
points. Then, a recursive algorithm checks every point to identify if they belong to the same trip 
as their previous point. Results and computational algorithms were validated based on a variety of 
independent datasets such as the National Household Travel Survey (NHTS) and the American 
Community Survey (ACS), and peer-reviewed by an external expert panel in a US DOT Federal 
Highway Administration’s Exploratory Advanced Research Program project (Zhang and Ghader, 
2020). By running the algorithm on our data and comparing the trip lengths and travel times with 
the reported travel distances and travel times from the 2017 National Household Travel Survey, a 
satisfactory match was observed. Moreover, we compared mobility trends calculated by our 
methods and by other data sources including Apple, Google, and SafeGraph and found high 
consistency. All data and trip identification remained securely within MTI’s systems. 
 
Imputations of Home and Work Locations, Travel Modes, Routes, and Matching to Map 
Home and Work Locations: A typical methodology for identifying home and work clusters is to 
identify the most frequently visited clusters during the night and during the day. The algorithm 
first applies a HDBSCAN clustering algorithm to cluster all device observations into activity 
locations. This step takes the cleaned multi-day location data as input and applies an iterative 
algorithm until no cluster has a radius larger than two miles. The iterative algorithm consists of 
two parts: HDBSCAN, based on a minimum number of point parameters and filtering non-static 
clusters based on time and speed checks. After finalizing the potential stay clusters, the algorithm 
combines nearby clusters to avoid splitting a single activity. Here, instead of setting a fixed time 
period for each type, e.g., 8pm to 8am as the study period for home CBG identification and the 
other half day for work CBG identification, the framework examines both temporal and spatial 
features for the entire activity location list. The benefits are two-fold: the results for workers with 
flexible or opposite work schedules is more accurate and the employment type for each device can 
be detected simultaneously. 
 
Travel Mode Imputation: A machine learning model was developed and applied to impute the 
ground transportation travel modes for non-air trips, including vehicle (car and bus), rail, and 
walk/bike. Feature engineering directly affects the model performances. Three types of features 
are incorporated for transportation travel mode imputation, including location recording intervals, 
trip-level features, and features about multimodal transportation network (a total of 32 features). 
More details are presented in Appendix A. 
 
Map Matching and Routing: The team developed and implemented a computationally efficient 
method to map crash and vehicle/pedestrian/bicycle/e-scooter movements data to an all-street 
roadway. This allows project engineers to evaluate the weighted vehicle/pedestrian/bicycle/e-
scooter volumes at each intersection and each roadway segment. In addition, the team has worked 
with MDOT SHA to incorporate other available safety data sources from the state of Maryland 
into the map matching process. 
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Postprocessing 
Weighting: The sample data must be expanded to produce population-level statistics of safety 
exposure for those vulnerable road users. The LBS represents a sample of the population, so 
device-level weights were needed to expand the device sample to the broader population. Also, for 
an observed device, only a sample of all trips may be recorded, so trip-level weights were needed. 
In order to obtain device-level weights, MTI used the home locations, obtained from the imputed 
home CBG information. The weight for each device is equal to the number of devices observed in 
the device’s imputed home location divided by the population of the zone where home is located. 
So, all devices residing in that CBG would have the same device-level weight. These weighting 
processes expand the data analytics to cover the entire population, such that the mobility of the 
individuals who are not observed in the data or that do not own a smartphone with location-based 
service is also captured by our analytics. 
 
Validation The estimated vehicle and pedestrian/bicycle volumes are validated before 
visualization and being used for the project dashboard. For vehicle volume validation, the project 
team employed hourly traffic count data from MDOT SHA, including 1,933 portable traffic count 
stations (189,456 records) and 62 permanent traffic count stations (968,880 records). For 
pedestrian bicycle volume validation, the project team collected 15-minute interval 
pedestrian/bicycle count data from the above dataset that records the number of pedestrians and 
bicycles coming from each approach of an intersection. A total number of 845 count locations 
(89,500 records) were included in the pedestrian/bicycle count data. The pedestrian bicycle counts 
are further aggregated into 1-hour interval for validation. 
 
The team validated data using two standard metrics that are widely adopted in research and 
practice: (1) R-Squared (R2), a statistical measure that quantifies how much the dependent variable 
can be explained by the independent variables, and, (2) Normalized Mean Absolute Error 
(NMAE), defined as Mean Absolute Error (MAE) divided by the mean value of all observations. 
 
The validation of vehicle volumes has a 0.98 R2 and 10% NMAE. The validation of 
pedestrian/bicycle volumes has a 0.80 R2 and 32% NMAE. The accuracy of the project estimated 
vehicle and pedestrian/bicycle volumes meets the Federal Highway Administration validation 
target (Cambridge Systematics, 2010) and is in line with the accuracy of other commercial 
products (e.g., StreetLight, 2020). The accuracy of validation for pedestrian/bicycle volumes is 
naturally lower than vehicle volumes, partly due to the data discrepancy. The current data 
collection method aggregates pedestrians and bicycles on each approach of an intersection. Unlike 
vehicle trajectories, which follow the roadway network directions, pedestrian/bicycle trajectories 
at an intersection are widely unknown under existing collection methods (manual counts). In other 
words, the mobile device location data covers more pedestrian/bicycle activities than volumes that 
are crossing the intersection. On the other hand, for intersections/segments where bus stops are 
located, certain pedestrian/bicycle trajectories could be categorized as bus trajectories and lead to 
underestimation. This is a parsing that should be further explored.  
 
Visualization After extensive exploration, traditional vectorized visualization, which is typically 
used in GIS, Tableau, or Mapbox applications, was found to be unsuitable for this project. The 
data being visualized in this project is dramatically larger in size and covers all roadway segments 
and intersections in Maryland, which leads to noticeable time lag when zooming in and out using 
the vectorized visualization. Instead, the team developed a rasterization method to effectively 
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visualize the mobility data generated from the analyses process. The team first defined multiple 
zoom levels for the maneuver of the visualization tool (in total, sixteen zoom levels have been 
defined). For each zoom level, a different scale is used to represent different level of visualization 
fidelity. Then, the visualization generates multiple tiles of figure files in the PNG format. This 
rasterization method is superior in visualizing “big” data. It brings all the heavy computation 
offline, while traditional vectorization method has to perform rendering and vectorizing on the go. 
This finding was critical to stakeholders reviewing the tool. Visualization being critical in the 
dashboard development led the team to spend significant time refining the exponentially large 
datasets. 
 
ANALYTICAL APPROACH OF ESTIMATING RISK 
As part of this project, crash frequency models were developed for pedestrian and bicyclist 
involved crashes at Maryland intersections and road segments in order to predict and identify 
safety risk hotspots. This section summarizes and discusses the results of those crash frequency 
models at the higher level. More details about the modeling study are offered in the project white 
paper (see Appendix B). 
 
Four statistical models were developed and estimated in this project to examine the role of various 
key contributing factors including safety risk exposure factors in pedestrian and bicyclist crashes 
that have occurred in the state of Maryland. These models are the Poisson model, the negative 
binomial model, the zero-inflated Poisson model, and the zero-inflated negative binomial (ZINB) 
model. The results of these models have been compared to identify the most suitable model that 
best fits the data. For the purposes of this study the ZINB model provided the best results. 
 
The model incorporates vehicle and pedestrian bicycle volume estimates and other geometric 
design characteristics, socio-demographics, built environment features, as well as traffic-related 
information. The results indicate that key contributing factors to pedestrian bicycle-related crashes 
include number of intersections legs and level of traffic stress (LTS) ratings, commute mode 
shares, road network density and activity density, percentage of low-income workers, among other 
factors. The results also highlight that the inclusion of estimated vehicle and pedestrian bicycle 
volume significantly improves the performance of the model. The model was then used to predict 
the number of pedestrian and bicycle crashes, which in turn generated the crash risk for each 
intersection and road segment within the state of Maryland.  
 
 
 
The final deliverable of this project addresses the initial research questions. First, the 2019 safety 
exposure of pedestrians, bicyclists, and e-scooters in Maryland was successfully estimated at the 
road segment and intersection level based on emerging data-driven methods and statistical and 
predictive modeling. Second, such exposure information was processed, visualized, and packaged 
on an online interactive platform (https://mti.umd.edu/sdi) for researchers and practitioners to use 
for a complete situational awareness of vulnerable roadway user safety. These collectively address 
the research need and data gap through a reliable, comprehensive, and up-to-date information 
source on pedestrian/bicycle exposure, and convey such information through useable visualization 
tools. The following information is provided via the dashboard: 
• Base map visualizations of vehicle volume, pedestrian/bicycle volume, and e-scooter volume 

by different season, day of week, and time of day. 

5. DESCRIPTIONS AND INSIGHTS OF THE DASHBOARD TOOL 
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• An informational panel offering statistics for each intersection/link segment. Statistical 
measurements including vehicle volume, pedestrian/bicycle volume, e-scooter volume, 
predicted safety risks, and level of traffic stress (LTS) by different season, day of week, and 
time of day. Measurement estimates are provided for the year 2019. 

• Ranking analytics highlighting the top ranked locations in terms of those abovementioned 
measurements in Maryland and in each jurisdiction of Maryland. 

• Pedestrian- and bicycle-involved crash visualization and informatics including units involved, 
crash injury severity, and vehicle/person movements. Information is aggregated to each link 
segment. Crash data employed covers the time period of 2016-2019. 

 
The development of this safety dashboard is leading edge, though we note that the US DOT is 
involved in multiple efforts nationally within Pooled Fund Studies to generate greater data-driven 
situational awareness of the transportation system through location-based data (e.g. TPF-5(384)). 
Several of these national efforts use mobile device location-based data, which is collected via the 
mobile device’s downloaded application location pinging through GPS-enabled smartphones.  
 
We have limited information on crash risk rates, in part due to the lack of exposure information. 
This tool fills the information gap and supports users throughout MDOT and local jurisdictions to 
identify safety risk hot spots and improve the situational awareness of existing pedestrian and 
bicycle activities. Moreover, the improved understanding of vulnerable user density also advances 
the modeling and predictions of crashes, as highlighted by our modeling practice. This is also fully 
leveraged in the dashboard, where users may rank roadway facilities at the link level by volume 
and predicted safety risks, and by a specific jurisdiction. This dashboard is expected to assist local 
agencies with their respective priority decisions, such as developing safety countermeasures and 
pedestrian/bicycle safety improvement plans and decisions. The dashboard is not a substitute for 
engineering analyses, rather it is a starting point for increased understanding of the transportation 
ecosystem. It can be used in planning to identify the limits of a project with similar safety risks, 
identification of locations where government agencies need to pay closer attention, and also 
provides insights on locations that have low risk but high volumes of vulnerable roadway users, 
which may indicate that a roadway treatment is successful in reducing crashes. 
 
 

This project successfully integrated mobile device location data into a data-driven analytical and 
visualization dashboard for assessing safety exposure of pedestrians, bicycles, and e-scooters. This 
study demonstrated crash prediction models empowered by data-driven volume data at 
intersections and link segments. The pedestrian and bicycle volume estimates reliably 
demonstrated an increased goodness of fit of predictions, which in research had not been recorded 
in full, and enables a spectrum of future studies to be pursued in the transportation safety domain. 
 
The project has also learned additional lessons that could potentially benefit other data-driven 
projects within and beyond the scope of transportation safety.  
• Zero-inflated negative binomial models were found to be superior compared to other 

statistical approaches at the intersection level and segment level. The models are also 
successfully employed in this project for predictions of safety risks. 

6. LESSONS LEARNED, CHALLENGES, AND OPPORTUNITIES 
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• A novel rasterization visualization was developed to facilitate large-scale visualization using 
the data. Compared to vectorization, this method significantly improves the front-end 
performance by moving most of the computation to the backend offline environment.  

 
Several challenges of the project are also noted and worth further exploration: 
• It was challenging to identify pedestrian/bicycle traces given the existing data evidence. More 

data could be collected to improve the algorithms as well as validate the data-driven approach. 
Evidence could be drawn from dedicated pedestrian/bicycle GPS surveys, video records, and 
other supplementary data sources based on advanced learning and artificial intelligence. 
Additional empirical data would further improve the methodology. 

• The needs of differentiating pedestrian and bicycle volumes and exposures was noted from 
internal and external stakeholder feedback. This refinement would support mode-specific 
decision making. However, these two modes are currently combined as one due to the close 
similarity. The team expects to explore ways to distinguish them in the near future. Possible 
directions include adding data and features such as exclusive facility information (bike lanes, 
walking trails etc.), further exploring the unique characteristics of speed distributions, and so 
forth.  

• E-scooter analyses were also challenging. As an emerging mobility option, e-scooter is 
relatively less studied and thus limited references and data are available for the team to 
construct a machine learning model and extract the associated mobility from the mobile 
device data. In addition, e-scooter safety data is largely lacking. Most crash reporting 
procedures do not record e-scooter crashes as a standalone crash category. The 
recommendation from this research is that it is imperative e-scooters be recorded as their own 
category in some fashion given the abundant safety risks faced by e-scooter users to support 
research and safety mitigation strategies. 

 
In summary, this project successfully analyzed and integrated emerging mobile device location 
data to fill a critical gap in the field of transportation safety, i.e., measuring pedestrian and bicycle 
volumes and safety exposure across all links within the State of Maryland. The novel approach to 
use big-data on a data-driven dashboard that visualizes volume estimates for vulnerable road users 
and predicts and identifies safety hotspots significantly improve the state of the practice for 
planners and engineers. Compared to the current use of surveys and manual/automatic counts, 
leveraging this emerging big-data source has significant advantages. With the improved 
understanding of pedestrian and bicycle volumes, safety risk exposure of those vulnerable users 
can also be analyzed at more disaggregated level. The tool can immediately help stakeholders gain 
more insights into pedestrian and bicycle traffic that previously was rarely available in practice.  
Stakeholders who reviewed this dashboard immediately identified with the ability to see “the 
bigger picture”, the ability to rank the top locations within the state or specific counties, or knowing 
that the riskiest locations are not single intersections but the trajectory of multiple “clusters” of 
intersections. The regions around Washington D.C. especially are already using this dashboard to 
provide more situational awareness as the narrative shifts from single point improvements to a 
system of improvements for increased vulnerable roadway user mobility. Ultimately this tool has 
already accomplished its principal goal to accelerate the use of reasonably accurate big-data to 
support data-driven decision making to improve the safety of vulnerable roadway users in 
Maryland. As of Summer 2021, the MDOT SHA has funded the expansion of the tool to support 
new requests from practitioners across the state.   
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To reduce several of the previously mentioned limitations, this project leverages and integrates 
mobile device location data into a data-driven analytical and visualization dashboard 
(https://mti.umd.edu/sdi). Compared to the current state of the practice that relies on surveys and 
manual/automatic counts, leveraging this emerging big-data source has significant advantages: 
1. it no longer requires costly and time-consuming surveys or counts collections; 
2. mobile device location data draws evidence from a much larger sample, covering over 40% 

of the entire U.S. population;  
3. unlike cross-sectional data (i.e. data taken only on one or a few days of the year), this data 

provides a continuous time series of pedestrian and bicycle movements (we propose to 
analyze a one-year time period) and covers the entire Maryland roadway network, including 
rural areas where traditional pedestrian/bicycle data is lacking; 

4. the availability of the data source is in the entire U.S., not just Maryland, which would enable 
a fast and cost-effective transfer of this project to other states and jurisdictions throughout the 
nation. 

 
This dashboard reports exposure and crash information for pedestrians, bicycles, and e-scooters at 
a microscopic level, as illustrated in Figure 1, below.  
 

 
Figure 1. Data-Driven Safety Dashboard Deployment Framework for Maryland 
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The development of this safety dashboard is leading edge, though we note that the U.S. Department 
of Transportation (U.S. DOT) is involved in multiple efforts nationally within Pooled Fund Studies 
to generate greater data-driven situational awareness of the transportation system through location-
based data (e.g. TPF-5(384)). Several of these national efforts use mobile device location-based 
data, which is collected via the mobile device’s downloaded application (app) location pinging 
through GPS-enabled smartphones. This data source is capable of revealing multimodal mobility, 
including pedestrian and bicycle movements (Zhang et al., 2019). The tool aims to help agency 
users from various teams throughout all MDOT Offices identify safety risk hot spots and improve 
the situational awareness of existing pedestrian and bicycle activities as they tie to historical 
crashes. Users may also rank roadway facilities at the link level by volume, and predicted safety 
risks, or by a specific county, which would assist local county agencies with their respective 
priority rankings.  
 
Analytical functions (e.g., subareas, sorting, filtering, etc.) are customized according to agency 
needs. During the project, the following activities and steps have fostered the iterative process in 
support tool development, refinement, and implementation: 

1) Monthly team meeting series that brings together all team partners and US DOT OST. This 
has synchronized all team partners and collected feedback iteratively about the project. 

2) Close engagement of key stakeholders across MDOT and local jurisdictions of the safety 
tool. When deploying the tool, stakeholders within the state were requested to review and 
comment on the design and analytical functions (e.g., subareas, sorting, filtering, etc.). The 
stakeholder comments were collected and addressed to develop the final tool. 

3) Quarterly Pedestrian-Bicycle Emphasis Area Team (P-BEAT) meeting and quarterly 
CODES (crash outcomes data evaluation system) board meetings. These meetings have a 
broad audience who are stakeholders and potential end-users of the safety tool, working in 
the area of pedestrian/bicycle safety within Maryland.  

4) Iterative feedback was also collected via two peer exchange events with other Safety Data 
Initiative project teams. 

 
The following sections elaborate on the technical steps of data sources and assembly, data 
analytics, algorithms, visualization, as well as crash prediction models. Section 3 describes data 
sources being used in the development of the project tool. Section 4 discusses the methodologies 
employed in analyzing mobile device data and generating the final data products, i.e., 
measurements of pedestrian and bicycle volumes. Section 5 presents the models of crash frequency 
at intersections and roadway segments. These models are then used in the dashboard for 
predictions of safety risks.  
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Figure 2 shows the methodology flowchart of the dashboard. The project team estimated the 
vehicle and pedestrian bicycle volume at the link- and intersection-level leveraging a set of 
previously developed and validated algorithms made available via the USDOT Federal Highway 
Administration’s Exploratory Advanced Research Program project entitled “Data analytics and 
modeling methods for tracking and predicting origin-destination travel trends based on mobile 
device data”. 
 

 
 

Figure 2. Methodology flowchart of the project. 
 
Several key steps were taken in order to derive pedestrian and bicycle mobility data at each 
intersection and roadway segment: 
• First, we employed a state-of-the-practice data preprocessing to integrate and clean the 

mobile device location data; 
• The team then clustered location points into activity locations and identified home and work 

locations at the census block group (CBG) level to protect privacy; 
• Next, we applied previously developed and validated imputation algorithms to identify all 

trips from the cleaned data panel, including trip origin, destination, departure time, arrival 
time. Most importantly, travel modes and routes were imputed so that pedestrian and bicycle 
activities can be inferred and aggregated to each intersection and roadway segment; 

• Lastly, postprocessing steps were taken to expand our sample to all population, validate our 
estimated volumes, and visualize the mobility data on a large-scale and interactive map-
based visualization platform embedded in the project dashboard.  
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Data Processing 
 
Some common issues, such as unordered and duplicated records, need careful treatment before 
extracting any information from mobile device location data. The state-of-the-practice methods 
for raw data cleaning and quality control often include identifying and merging duplicate device 
observations, removing outliers, and checking on the obvious data consistency issues (e.g., devices 
with unreasonably high-speed readings). Figure 3 shows a general data cleaning procedure for 
mobile device location data taken by the research team based on the four dimensions of data quality 
assessment: consistency, accuracy, completeness, and timeliness. 
 

 
Figure 3. State-of-the-practice data cleaning procedure employed in the study. 

 
The completeness dimension cannot be considered without prior knowledge of the actual 
individual movements and mobile device usage. The timeliness is addressed by using daily feeds 
of mobile device location data for our application. For the first two dimensions related to data 
cleaning, the consistency dimension defines certain semantic rules that a set of data items should 
obey. A common type of semantic rule is integrity constraints. For example, the latitude and 
longitude of a location observation should be within a reasonable range. According to the integrity 
constraints, the cleaning procedure first deletes records with invalid entries and duplicate records 
to reduce redundancy. Since one subject cannot be at more than one place at the same time, the 
procedure keeps only one location record per second (with the highest accuracy, if applicable). 
Another important dimension of data quality assessment is accuracy, including syntactic and 
semantic accuracy. The syntactic accuracy measures the closeness of a value to all the elements of 
its corresponding definition domain. The semantic accuracy measures the closeness of a value to 
its real-world value. For example, an accuracy of 10 meters in a location sighting indicates that the 
subject should be within a radius of 10 meters from the observed location with a certain confidence 
level, e.g., 95%. Therefore, the cleaning procedure removes the noisy records with extremely poor 
accuracy, e.g., two miles. 
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Location data providers describe their sample sizes with statistics such as daily active users (DAU) 
and monthly active users (MAU). MAUs are devices that are observed at least once a month and 
DAUs are devices that are continuously observed throughout the month. Reported data coverage 
by major data providers ranges between 5% to 70%, depending on whether they report MAU or 
DAU and how they define active users.  
 
While the overall sample size is measured by daily and monthly active users, these measures do 
not take into consideration that some devices may provide many sightings every day while other 
devices may only provide a few sightings in a very small number of days. Table 1 presents more 
information about the mobile device location dataset used in this research. The following 
definitions describe the variables presented in the table: 
• Daily population coverage: number of devices with identifiable home census block group 

(CBG) divided by the population of the study area. 
• Temporal consistency: average number of days a device is observed in the study period. 
• Frequency: the average location observations per device per day. 
• Geographical representativeness: variance of population coverage among different zones of 

the study area, measured by a Gini coefficient between 0 and 1, with 0 indicating equal 
sampling rate in all zones and 1 indicating that all observed devices are from a single zone. 

• Device representativeness: a measure of the variance in the location point frequency among 
observed devices. This measure shows if observed devices are comparable in terms of their 
data frequency and are also measured by a Gini coefficient falling between 0 and 1. Raw data 
representativeness has a lower value if all observed devices have more consistent data 
frequency.  

• Hourly and daily temporal coverage: a measure of the variation of the number of location 
point observations among different hours of the day and different days of the month, 
respectively. Lower values between 0 and 1 indicate a more equitable distribution. 
 
 

Table 1 Data quality of the mobile device location dataset 
 

Selected Raw Data Quality Metrics Mobile Device Location Dataset 
Daily population coverage (%) 23.92 
Geographical representativeness (0~1) 0.09 
Frequency (observations per device per day) 190  
Temporal consistency (days per device) 14.67 
Device representativeness (0~1) 0.67  
Hourly temporal coverage (0~1) 0.249 
Daily temporal coverage (0~1) 0.03  

 
Trip Identification 
 
Trips are not initially included in any mobile device location data sources. Instead, location 
sightings are continuously generated while the sample device moves, stops, stays static, or starts a 
new trip. As a result, we developed a trip identification algorithm, which can detect which location 
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sightings form a trip together.  We first sort device observations by time. The algorithm assigns a 
random ID to each trip it identifies. Many location points in the dataset may belong to no trips. 
The algorithm assigns “0” to the trip ID of these locations to tag them as static points. For every 
location point, we calculate distance, time, and speed between the point and its immediate previous 
and next points, if exist. Three hyperparameters need to be set for the algorithm: distance threshold, 
time threshold, and speed threshold. The speed threshold is used to identify if a location point is 
recorded on the move. The distance and time thresholds are used to identify stay locations and trip 
ends. At this step, the algorithm identifies the device’s first observation with speed from≥speed 
threshold. This identified location point is recorded on the move, so a hashed trip ID is generated 
and assigned to this point. All points recorded before this point, if exist, are set to have “0” as their 
trip ID. Next, a recursive algorithm identifies if the next points are on the same trip and should 
have the same trip ID. 
 
Then, a recursive algorithm has been developed to check every point to identify if they belong to 
the same trip as their previous point. If they do, they are assigned the same trip ID. If they do not, 
they are either assigned a new hashed trip id (when their speed from≥speed threshold) or their 
trip ID is set to “0” (when their speed from<speed threshold). Identifying if a point belongs to 
the same trip as its previous point is based on the point’s “speed to”, “distance to” and “
time to” attributes. If a device is seen in a point with distance to≥distance threshold but is not 
observed to move there (speed to<speed threshold), the point does not belong to the same trip as 
its previous point. When the device is on the move at a point (speed to≥speed threshold), the point 
belongs to the same trip as its previous point; but when the device stops, the algorithm checks the 
radius and dwell time to identify if the previous trip has ended. If the device stays at the stop (points 
should be closer than the distance threshold) for a period of time shorter than the time threshold, 
the points still belong to the previous trip. When the dwell time reaches above the time threshold, 
the trip ends, and the next points no longer belong to the same trip. The algorithm does this by 
updating “time from” to be measured from the first observation in the stop, not the point’s previous 
point. The algorithm may identify a local movement as a trip if the device moves within a stay 
location. To filter out such trips, all trips that are shorter than 300 meters are removed. 
 
Results and computational algorithms have been validated based on a variety of independent 
datasets such as the National Household Travel Survey (NHTS) and the American Community 
Survey (ACS), and peer-reviewed by an external expert panel in a U.S. Department of 
Transportation Federal Highway Administration’s Exploratory Advanced Research Program 
project (Zhang and Ghader, 2020). By running the algorithm on our data and comparing the trip 
lengths and travel times with the reported travel distances and travel times from the 2017 national 
household travel survey, a satisfactory match is observed. Moreover, we compared mobility trends 
calculated by our methods and by other data sources including Apple, Google, and SafeGraph and 
found high consistency.  
 
Imputations of Home and Work Locations, Travel Modes, Routes, and Matching to Map 
 
Home and Work Locations A typical methodology for identifying home and work clusters is to 
identify the most frequently visited clusters during the night and during the day. The algorithm 
first applies HDBSCAN clustering algorithm to clusters all device observations into activity 
locations. This step takes the cleaned multi-day location data as input and applies an iterative 
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algorithm until no cluster has a radius larger than two miles. The iterative algorithm consists of 
two parts: HDBSCAN based on a minimum number of point parameters and filtering non-static 
clusters based on time and speed checks. After finalizing the potential stay clusters, the algorithm 
combines nearby clusters to avoid splitting a single activity. Here, instead of setting a fixed time 
period for each type, e.g., 8pm to 8am as the study period for home CBG identification and the 
other half day for work CBG identification, the framework examines both temporal and spatial 
features for the entire activity location list. The benefits are two-fold: the results for workers with 
flexible or opposite work schedules would be more accurate and the employment type for each 
device could be detected simultaneously. 
 
Travel Mode Imputation A machine learning model is developed and applied to impute the ground 
transportation travel modes for non-air trips, including vehicle (car and bus), rail, and walk/bike. 
More details are presented in the following sub-sections. Feature engineering directly affects the 
model performances. Three types of features (including a total of 32 features) are considered for 
ground transportation travel mode imputation, as shown in Table 2.  
 
Table 2. Features for Imputing Ground Transportation Travel Mode Imputation 
Features Number of Features 
Location Recording Interval Feature  
      Average # of records per minute 1 
Trip Features  
      Origin-destination straight-line distance 1 
      Cumulative trip distance 1 
      Travel time 1 
      Average travel speed 1 
      0th, 5th, 25th, 50th, 75th, 95th, 100th percentile travel speed 7 
Multimodal Transportation Network Features  
      0th, 5th, 25th, 50th, 75th, 95th, 100th percentile distance to the nearest 
rail lines 

7 

      0th, 5th, 25th, 50th, 75th, 95th, 100th percentile distance to the nearest 
bus lines 

7 

      Origin/Destination distances to the nearest rail station 2 
      Origin/Destination distances to the nearest bus stop 2 
      Percentage of records within 165-feet of all rail stations 1 
      Percentage of records within 165-feet of all bus stops 1 

 
The Location Recording Interval (LRI) feature, represented by the average number of sightings 
per minute, indicates the location service usage during a trip. The trip features can show the 
characteristics of each trip, including the origin-destination straight-line distance, cumulative trip 
distance (network distance), travel time, average travel speed, and different percentiles of travel 
speed, which are all derived from our sighting data. The multimodal transportation network 
features are important to distinguish between different ground transportation travel modes. Here, 
the distance for each sighting to its nearest rail and bus lines are generated to calculate the 0th, 5th, 
25th, 50th, 75th, 95th, and 100th percentile distance to rail and bus lines; the distance for the 
origin/destination of each trip to its nearest rail and bus stations/stops are also calculated. Also, the 
percentage of records within 165 feet of all rail stations or bus stops are calculated for each trip. 
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The U.S. national bus and rail lines and bus stops and rail stations (including metro and Amtrak 
Stations) are collected from the Homeland Infrastructure Foundation-Level Data (HIFLD) and 
U.S. Department of Transportation Bureau of Transportation Statistics. 
 
After comparing the performance of different machine learning models, the Random Forest (RF) 
machine learning model is selected as the final model to impute the ground transportation travel 
modes. The model is trained using over 11,000 sample data with labeled travel mode information. 
Synthetic Minority Over-Sampling Technique (SMOTE) is then applied to the training data to 
address the imbalanced sample problem, where the minority class from the existing samples is 
synthesized (Bohte and Maat, 2009). The randomized search approach is used to fine-tune the 
model. During the model training process, 10-fold cross-validation (CV) is conducted to evaluate 
the model performance. The training results show that the RF model can achieve 97.1% cross-
validation accuracy for ground transportation travel mode imputation. The trips with the imputed 
four modes are further aggregated into three modes, including vehicle (car and bus), rail, and 
walk/bike. 
 
 
Map Matching and Routing The team has developed and implemented a computationally efficient 
method to map crash and vehicle/pedestrian/bicycle/e-scooter movements data to an all-street 
roadway network (illustrated in Figure 4). This allows project engineers to evaluate the weighted 
vehicle/pedestrian/bicycle/e-scooter volumes at each intersection and each roadway segment. 
Through this project, the team has worked with MDOT SHA to incorporate other available safety 
data sources in the state of Maryland. 
 

 

(a) (b) 
Figure 4. Map Matching of (a) Crashes and (b) Mobility Movements at Intersection and Roadway 

Segment Levels 

 
A spatial index method, KD-Tree, is first used to find all the roads within 328 ft (or 100 meters) 
for each sighting. The next step is to construct the complete path between all the sightings snapped 
to the road networks using routing algorithms. For each sighting, the team first compares its travel 
direction and the travel direction of its nearby roads within 328 ft. The closest candidate link with 
an absolute travel direction difference smaller than 30 degrees is selected as a valid match. Then, 
the path between the consecutive matched sightings is reconstructed by using the shortest path 
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algorithm based on road length. In the meantime, reasonableness checks are also conducted during 
the routing process. For each pair of consecutive sightings snapped to the network, the routed 
distance is first calculated by adding the length of all the road segments routed between the two 
sightings.  
 
Then, two reasonableness checks will be conducted:  

• If the routed distance is greater than the cumulative distance between the two observed 
snapped to the network by 1.24 miles or more, we consider the route as invalid and in need 
of revision.  

• The travel time on these links will be calculated based on the timestamp difference of the 
two snapped sightings. With the routed distance and travel time, the average travel speed 
on these links can be calculated. If the speed exceeds 112 mph (180 km/h), we consider 
one of the two sightings is matched to the wrong link. 

 
If either of these two violations is observed, we conduct an incremental approach by randomly 
removing one of the sightings, conduct the routing with the previous/next sighting snapped to the 
network, and examine the distance and travel speed until they do not violate the 1.24-mile 
threshold or the 112-mph threshold. 
 
Postprocessing 
 
Weighting The sample data needs to be expanded to produce population-level statistics of safety 
exposure for those vulnerable road users. The devices available in our dataset represent a sample 
of the population, so device-level weights are needed to expand the device sample. Also, for an 
observed device, only a sample of all trips may be recorded, so trip-level weights are needed as 
well. In order to obtain device-level weights, we have used the home locations, obtained from the 
imputed home CBG information. The weight for each device is equal to the number of devices 
observed in the device’s imputed home location divided by the population of the zone where home 
is located. So, all devices residing in that CBG would have the same device-level weight. For 
instance, if our sample includes 100 devices in a CBG with a population of 2,000, each device 
would be assigned a weight of 20. For trip-level weights, we have calculated number of trips per 
person (trip rate) for each CBG during an average weekday from our sample. We have also 
calculated this trip rate number for each state from the 2017 National Household Travel Survey. 
We have used a single trip rate for all trips generated from each state, equal to the NHTS trip rate 
divided by our observed trip rate. 
 
Validation The estimated vehicle and pedestrian/bicycle volumes are validated before 
visualization and being used for the project dashboard. For vehicle volume validation, the project 
team employed hourly traffic count data from the Maryland Department of Transportation State 
Highway Administration (MDOT SHA), including 1,933 portable traffic count stations (189,456 
records) and 62 permanent traffic count stations (968,880 records). For pedestrian bicycle volume 
validation, the project team collected 15-minute interval pedestrian/bicycle count data from 
MDOT SHA that records the number of pedestrians and bicycles coming from each approach of 
an intersection. A total number of 845 count locations (89,500 records) were included in the 
pedestrian/bicycle count data. The pedestrian bicycle counts are further aggregated into 1-hour 
interval for validation. 
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The team measured the validation performance using two standard metrics that are widely adopted 
in the research and practice: 
• R-Squared (R2): A statistical measure that quantifies how much the dependent variable can 

be explained by the independent variables. 
• Normalized Mean Absolute Error (NMAE): Defined as Mean Absolute Error (MAE) divided 

by the mean value of all observations. 
 
The validation of vehicle volumes has a 0.98 R2 and 10% NMAE. The validation of 
pedestrian/bicycle volumes has a 0.80 R2 and 32% NMAE. The accuracy of the project estimated 
vehicle and pedestrian/bicycle volumes meets the Federal Highway Administration validation 
target (Cambridge Systematics, 2010) and is in line with the accuracy of other industrial data 
products (e.g., StreetLight, 2020). The accuracy of validation for pedestrian/bicycle volumes is 
lower than vehicle volumes. This is partly due to the data discrepancy. The best validation data we 
can collect is the counts of incoming pedestrians and bicycles from each approach of an 
intersection. Unlike vehicle trajectories which will more or less follow the roadway network 
directions, the fuzziness of pedestrian/bicycle trajectories near an intersection can be much higher. 
In other words, the mobile device location data covers more pedestrian/bicycle activities than 
volumes that are crossing the intersection. On the other hand, for intersections/segments where bus 
stops are located, certain pedestrian/bicycle trajectories could be categorized as bus trajectories 
and lead to underestimation. This limitation will be further explored. As an immediate next step, 
the team will work on additional data collection at roadway segments and intersections of all 
pedestrians and bicyclists for a more comprehensive validation and recalibration of the algorithms, 
if deemed necessary. 
 
 
Visualization is an important final step for the project. The project dashboard needs an intuitive 
and yet effective visualization platform to engage its users and offer quick and accurate analytical 
insights.  
 
With weighted and validated vehicle, pedestrian/bicycle trajectories and volume data, the team 
works on a proper visualization method to display the data to potential dashboard and data users. 
After extensive exploration, traditional vectorized visualization that are typically used in GIS, 
Tableau, or Mapbox applications is found not suitable. The data being visualized in this project is 
dramatically bigger in size and covers all roadway segments and intersections in Maryland, which 
leads to noticeable time lag when zooming in and out using the vectorized visualization. 
 
Instead, the team has developed a rasterization method to effectively visualize the “big” mobility 
data generated from the analyses process. The team first defined multiple zoom levels for the 
maneuver of the visualization tool (in total, sixteen zoom levels have been defined). For each zoom 
level, a different scale is used to represent different level of visualization fidelity. Then, the 
visualization generates multiple tiles of figure files in the PNG format. For instance, at the zoom 
level 16, there are a total number of 2^16 * 2^16 tiles generated for visualization. Instead of doing 
vectorized visualization, each tile was discretized into pixels based on latitudes and longitudes 
(256*256 pixels are defined in each tile). We then used heat normalization based on 
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geoinformation of over 700 million activities (1.4 trillion location points in our vehicle and 
pedestrian/bicycle mobility data) to visualize the pixels. This process is summarized in Figure 5. 
 

 
Figure 5. Rasterization Visualization Process 

 
This rasterization method is superior in visualizing “big” data. It brings all the heavy computation 
offline, while traditional vectorization method has to perform rendering and vectorizing on the go. 
The team leveraged cloud-computing infrastructure and expertise based on Amazon CloudFront 
to parallelize the computation of the aforementioned large amount of data and finally visualize via 
Mapbox GL JS environment. Figure 6 illustrates an example of the rasterization at the zoom level 
16 for College Park, Maryland. Pedestrian/bicycle data is visualized. All generated tiles are merged 
seamlessly to construct a high-fidelity map. The brighter color indicates higher level of 
pedestrian/bicycle volumes. 
 

 
 
Figure 6. An illustrative example of rasterization visualization (College Park, MD is shown) 
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Final Data Product 
 
The final data product of this step of mobility data analytics is two-fold. First of all, the safety 
exposure of pedestrians and bicyclists of Maryland in the year of 2019 has been developed and 
measured using the metrics of road segment level and intersection level volumes of these 
vulnerable road users. Second, such information is processed, visualized, and packaged on an 
online interactive platform (https://mti.umd.edu/sdi) for researchers and practitioners to use. These 
collectively address the research need and data gap in a reliable, comprehensive, and up-to-date 
information source on pedestrian/bicycle exposure, and convey such information via useful 
visualization tools. 
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ABSTRACT 
This study leverages big location-based service data collected from mobile devices in 2019 to 
conduct a pedestrian and bicyclist safety analysis. Statistical models are estimated for pedestrian 
and bicyclist crash frequency at Maryland intersections using the location-based service data as 
risk exposure data. The analysis is performed by employing prominent frequency modeling 
methodologies including Poisson, negative binomial, zero-inflated Poisson, and zero-inflated 
negative binomial regression techniques.  

The findings indicate that inclusion of big location-based service exposure data in the 
analysis improves the performance of the models. Further, the results suggest that key 
contributing factors to pedestrian and bicyclist crashes at Maryland intersections include: i) 
intersection design- and traffic-related attributes, such as number of intersection legs, presence of 
a traffic signal, average level of traffic stress rating, and safety risk exposure measures such as 
the average daily pedestrian, bicyclist, and vehicle volumes at the intersection; ii) travel-related 
attributes including public transportation and nonmotorized mode shares within the intersection’s 
census block group; iii) land use and built environment attributes such as road network density, 
activity density, and extent of walkability within the census block group; iv) socioeconomic and 
sociodemographic attributes including the percentage of low-income workers, households with 
no vehicles, African American population, and senior population within the census block group. 

The findings of the study show how big location-based service exposure data can be 
utilized to identify pedestrian and bicyclist safety risks and guide data-driven, evidence-based 
policy decision-making to improve the safety of vulnerable road users. 
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INTRODUCTION 
Between 2015 and 2019, more than one hundred pedestrians and bicyclists were killed each year 
in the state of Maryland (1–3). In 2019, 3,136 pedestrian crashes and 848 bicycle crashes 
occurred in Maryland, of which 2,872 pedestrian crashes and 695 bicycle crashes resulted in 
injuries or fatalities. This means that in 2019, over 90% of pedestrian crashes and over 80% of 
bicycle crashes in Maryland resulted in injury or death (2,3). Further, approximately one out of 
every four individuals killed in traffic crashes in Maryland was a pedestrian (2). 

To combat these statistics and improve pedestrian/bicyclist safety throughout the state, a 
newly articulated vision was adopted in the 2019 Maryland Bicycle and Pedestrian Master Plan: 
“Maryland will be a great place for biking and walking that safely connects people of all ages 
and abilities to life’s opportunities”(4). The Master Plan lists its first safety objective as reducing 
the number of pedestrian/bicycle injuries and fatalities within Maryland’s transportation system 
(4). Thus, to realize the vision of the Maryland Bicycle and Pedestrian Master Plan, pedestrian- 
and bicyclist-involved injuries and fatalities must decrease throughout the state.  

A crucial step towards that goal is to identify and gain a better understanding of the 
factors that pose a risk to the safety of pedestrians and bicyclists in Maryland. Many factors have 
been suggested to play a role in pedestrian and bicyclist crashes, including those representing 
pedestrian and bicyclist risk exposure (5–10), land use and the built environment (7,11–14), and 
sociodemographic/socioeconomic status (7,11,12,14,15). 

Among these factors, pedestrian/bicyclist exposure has been regarded as a critical factor 
in pedestrian and bicyclist crash analysis, the omission of which can lead to biased or overstated 
effects for the other factors (16). Exposure pedestrian and bicycle data have traditionally been 
collected through surveys or count collections at sample locations (13, 17,18). A few of the 
limitations of these conventional data collection methods include cost, time, accuracy, and 
subjectivity (13). As a result, reliable pedestrian/bicyclist exposure data are often unavailable. 
For these reasons, high-quality and readily-available pedestrian and bicyclist exposure data are 
considered as a limitation in safety analysis (16).  

Meanwhile, the potential for emerging big (i.e., crowdsourced) data to provide accurate 
and reliable pedestrian and bicyclist risk exposure data has been realized in recent years (9, 
13,17,18). Nonetheless, current safety studies using consistent big data remain limited in number 
and scope, especially with respect to pedestrians. This is in part due to limited sources of 
crowdsourced data for pedestrians. Lee and Sener (18) categorized existing crowdsourced 
pedestrian and bicyclist data sources into two categories: 1) active data sources, for which 
travelers’ active input is required (e.g., public bike-sharing programs, Strava); and 2) passive data 
sources, for which travelers’ active input is not required (e.g., global positioning systems (GPS), 
location-based services (LBS)). They concluded that while actively crowdsourced bicycling data 
have many potential applications in research and practice, pedestrian data have not received the 
same attention, as limited sources are available for actively crowdsourced pedestrian data. 
Further, they stated that passively crowdsourced pedestrian and bicycle data are not currently 
available due to a high level of uncertainty and low locational precision (18). 

As exposure data are needed to contextualize crash analyses and prioritize 
countermeasures to lower safety risks (13), utilization of high-quality and consistent exposure 
data is imperative in conducting pedestrian and bicyclist crash analysis. In other words, more 
comprehensive pedestrian and bicyclist crash analyses are those that use more reliable pedestrian 
and bicyclist exposure data, such as those provided through emerging crowdsourced services 
(i.e., big data). 
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To fill the important gap in understanding pedestrian and bicycle safety, crash frequency 
models have been developed in this study for pedestrian and bicyclists crashes at Maryland 
intersections by using emerging mobile-device location big data. This research was conducted as 
part of the Vulnerable Road User Density Exposure Dashboard project—a tool that utilizes big 
mobile device location data to provide data and insights on volumes and safety risk exposure of 
vulnerable road users (e.g., pedestrians, bicycles) at intersections and roadway segments within 
Maryland. This study is among the first to use consistent mobile-device location big data for both 
bicyclists and pedestrians in crash frequency analysis. The findings can assist policy decision-
makers by providing big data-driven evidence and guiding potential solutions for vulnerable road 
users’ exposure and safety. 

LITERATURE REVIEW 
Vulnerable road users such as pedestrians and bicyclists are susceptible to increased safety risks 
compared to other road users. Studies on pedestrian and bicyclist safety issues are abundant and 
identify key contributing factors to pedestrian- and bicyclist-involved crashes as well as suitable 
methodologies for crash frequency analysis.  

To address the fundamental issues typically associated with crash frequency data, 
previous research studies have employed various methodologies to analyze pedestrian- and 
bicyclist-involved crash frequency. According to Lord and Mannering (19), one of the main 
issues characterizing crash frequency data is overdispersion, which happens when the variance of 
the crash counts is considerably larger than the mean. The other issue that usually affects crash 
frequency data is having excess zeros, which happens when crash counts contain a significant 
number of zero values (10,19). 

To gain a better understanding of the factors that affect pedestrian/bicyclist safety and the 
methodologies applied to crash frequency data, a few studies are discussed in this section. 

To predict bicycle crash frequency at intersections, Saad et al. (9) used bicycle 
crowdsourced data from Strava and developed a negative binomial model. The study found that 
the frequency of bicycle crashes at intersections were positively associated with intersection size, 
the intersection being a signalized intersection, the number of intersection legs being four 
(compared to three-legged intersections), as well as the risk exposure factors (i.e., total entering 
volume and bicycle volume at the intersection). The study results also indicated that the 
frequency of bicycle crashes at intersections was negatively associated with the presence of a 
bike lane at the intersection. 

Raihan et al. (10) used a zero-inflated negative binomial model to develop crash 
modification factors for bicycle crashes in Florida’s urban areas. The study found that road 
design characteristics such as lane width and speed limit had positive effects on reducing bicycle 
crashes. Lower bicycle crash probabilities on segments were associated with increased bicycle 
activity. However, increased bicycle activity was associated with higher bicycle crash 
probabilities at intersections. Increased bicycle crash probabilities at intersections were also 
associated with the number of bus stops within the intersection influence area.  

Ukkusuri et al. (11) examined the role of various built environment, land use, road 
network, and sociodemographic factors as well as key exposure measures including traffic 
volume, transit ridership, and proportion of nonmotorized trip-makers in the frequency of total, 
injury-causing, and fatal pedestrian crashes. The study employed negative binomial and zero-
inflated negative binomial regressions to develop crash frequency models and found that 
increased numbers of total and/or fatal pedestrian crashes were associated with increased 
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proportions of industrial and commercial land use, increased transit ridership, increased numbers 
of subway stations, increased proportions of intersections with four and five approaches, 
increased proportions of primary roads without access restriction, and increased number of lanes. 

Sanders et al. (13) employed Poisson regression to examine the role of various factors in 
pedestrian exposure at intersections as well as bicycle exposure at various road segments in 
Seattle, Washington. The study found that variables representing population and land use (i.e., 
number of households, number of commercial properties, and the presence of a university near 
the intersection) were significantly associated with pedestrian exposure at intersections. 
Moreover, bicycle exposure was associated with the number of bicycle lanes on the road segment 
and land use variables such as the presence of a university or a school near the count location. 
The findings of that study provided insights into the factors affecting pedestrian and bicyclist risk 
exposure, which is a key contributing factor to pedestrian and bicyclist crashes. 

Jestico et al. (20) used a crowdsourced bicycling incident dataset for the Capital Regional 
District in British Columbia, Canada, to identify design attributes associated with unsafe 
intersections between multi-use trails and roads. Negative binomial regression was used to model 
the link between the number of bicycle crashes and near-miss incidents and the infrastructure 
characteristics at multi-use trail-road intersections. The results showed that factors associated 
with bicycle incident frequency at multi-use trail-road intersections included bicycling volumes, 
vehicle volumes, and trail sight distance. 

Many other studies also investigated factors affecting pedestrian and bicyclist safety risk 
exposure and modeled pedestrian- and bicyclist-involved crash frequency. The key contributing 
factors to pedestrian/bicyclist safety exposure and crash frequency that emerge from the 
literature include: sociodemographic and socioeconomic factors such as proportion of the 
population by race or age group (7,11,12,14,15); land use and built environment factors such as 
population density, employment density, activity diversity, bus stop density, and ratio of 
residential, industrial, and commercial uses (7,12–14); and traffic- and travel-related factors such 
as vehicle, pedestrian, and bicycle volumes as exposure measures (5–10). 

Further, the literature review reveals that the most prominent methodologies that have 
been applied to pedestrian and bicyclist crash frequency analysis are Poisson regression, negative 
binomial (NB) regression, zero-inflated Poisson (ZIP) regression, and zero-inflated negative 
binomial (ZINB) regression (5,14,19–21). The Poisson regression is usually considered the 
starting point in crash frequency modeling (5). Moreover, while the ZIP and ZINB regression 
methodologies have frequently been applied in empirical research to account for the 
preponderance of zeros observed in crash count data, the ZINB regression is applicable for count 
data that exhibit both overdispersion and excess zeros issues (10). 

Table 1 summarizes a few of the previous pedestrian and bicyclist safety studies. 

TABLE 1 Examples of Past Studies on Pedestrian and Bicyclist Safety Models 

Study Unit of 
Analysis Study Area Safety 

Measure Methodology Key Exposure 
Measure(s) 

Ukkusuri et 
al. 2012 (10) 

Census tract, 
zip code 

New York 
City (NYC), 

NY 

Total pedestrian 
crashes, severe 

crashes, and 
fatal crashes 

Negative binomial, 
and zero-inflated 
negative binomial 

models 

Traffic volume, 
pedestrian 

activity, operating 
speeds 
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Hosseinpour 
et al. 2012 

(5) 

Road 
segment 

Federal Road 
Network, 
Malaysia 

Frequency of 
pedestrian 

crashes 

Poisson, negative 
binomial, zero-inflated 

Poisson, and zero-
inflated negative 
binomial models 

Motorized traffic 
volume 

Lee et al. 
2015 (15) Zip code 

Various 
locations in 

FL 

Pedestrian 
crashes per 

crash location 
zip code, 

crash-involved 
pedestrians per 
residence zip 

code 

Bayesian poisson 
lognormal 

simultaneous 
equations spatial 

error model 

Log of 
population, log of 

vehicle miles 
traveled 

Sanders et al. 
2017 (13) 

Intersection, 
Road 

segment 
Seattle, WA Pedestrian and 

bicyclist counts Poisson model — a

Jestico et al. 
2017 (20) 

Multi-use 
trail 

intersection 

Capital 
Regional 
District, 
British 

Columbia, 
Canada 

Frequency of 
bicyclist crash 
and near miss 

incidents 

Negative binomial 
model 

Bicyclists, 
vehicles, and 

pedestrian 
volumes 

Xie at al. 
2017 (7) 

Grid cell 
(300×300 ft2) 

Manhattan 
(NYC), NY 

Pedestrian crash 
cost Tobit model 

Vehicle miles 
traveled, taxi 
trips, subway 

ridership 

Mansfield et 
al. 2018 (14) Census tract United States 

Frequency of 
pedestrian 
fatalities 

Negative binomial 
model, zero-inflated 
negative binomial 

model, zero-inflated 
negative binomial 

mixed model 

Vehicle miles 
traveled density 

(te thousand 
VMT/mi2) by 

roadway 
functional class 

Saad et al. 
2019 (9) Intersection Orange 

County, FL 
Frequency of 

bicycle crashes 
Negative binomial 

model 

Total entering 
volume, bicycle 

volume 

Raihan et al. 
2019 (10) 

Intersection, 
road segment 

Urban areas, 
FL 

Bicycle crash 
modification 

factors 

Zero-inflated negative 
binomial model 

Bicycle activity 
(Strava volumes) 

Lee et al. 
2019 (21) Intersection 

Orange and 
Seminole 

Counties, FL 

Pedestrian 
crashes 

Negative binomial, 
and zero-inflated 
negative binomial 

models 

Observed and 
predicted 

pedestrian trips 

Notes: — a: This was an exposure study; therefore, the exposure measures were the response variables in the models 
(i.e., pedestrian and bicyclist counts). 

METHODOLOGY 
Data 
Various data sources were utilized in this study to analyze the frequency of crashes involving 
vulnerable road users, such as pedestrians and bicyclists at Maryland intersections. These data 
sources provide data on the key factors that, based on the literature review, contribute to the 
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occurrence of pedestrian/bicyclist crashes. The data sources used in this study are described 
below. 

American Community Survey (ACS) 
The American Community Survey (ACS) is an annual survey program conducted by the United 
States Census Bureau. Data collected through this survey provide information about the 
population (e.g., socioeconomic/sociodemographic characteristics, means of commuting to work) 
as well as housing (e.g., financial and physical characteristics for housing units) at many 
geographical scales.  

The 2019 five-year ACS estimates at the census block group were used in this study as 
the source of socioeconomic and sociodemographic data in development of pedestrian/bicyclist 
crash frequency models. 

Big Location-based Service (LBS) Data 
The present study leverages large-scale, location-based service data, which were collected from 
anonymized mobile devices belonging to Marylanders. These anonymized mobile device 
location data are publicly available on the University of Maryland COVID-19 Impact Analysis 
Platform (22), which was developed by the Maryland Transportation Institute (MTI). The project 
was partially funded by the U.S. Department of Transportation’s Bureau of Transportation 
Statistics and National Science Foundation’s RAPID Program.  

The LBS data panel first integrated and processed locations for human movements in 
Maryland for the entire year of 2019. Then, a cloud-based computing platform was deployed 
using a multilevel weighting method, a spatial-temporal algorithm, as well as machine learning 
models to derive multimodal travel patterns. The data panel and the computational algorithms 
were validated based on a variety of independent datasets, such as the National Household Travel 
Survey and the American Community Survey, and peer-reviewed by an external expert panel 
from the U.S. Department of Transportation Federal Highway Administration’s Exploratory 
Advanced Research Program project. 

A map-matching and routing algorithm was also developed to assign the multimodal trips 
to the transportation network to estimate vehicle, pedestrian, and bicyclist volumes at 
intersections and links. In the present study, the LBS data was used to characterize safety risk 
exposure for vulnerable road users (i.e., pedestrians and bicyclists) by providing information on 
pedestrian, bicyclist, and vehicle volumes at intersections throughout Maryland. 

Level of Traffic Stress (LTS) 
Developed in 2012 (23), Level of Traffic Stress (LTS) is a scale that rates a road segment based 
on the traffic stress it imposes on bicyclists. LTS ranges from 1 (for the lowest level of traffic 
stress) to 4 (for highest level of traffic stress). The four levels of LTS are described in more 
detail by Furth (24). As a surrogate measure of pedestrian and bicyclist safety, the LTS was 
included in this analysis to quantify the traffic stress imposed on vulnerable road users at 
Maryland intersections. 

National Transit Map (NTM) 
Initially released in 2016, the National Transit Map (NTM) database is a product of the U.S. 
Department of Transportation’s Bureau of Transportation Statistics. This nationwide database 
provides information on fixed-guideway and fixed-route transit service across the entire U.S. 
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including transit agencies’ stops, routes, and schedules (25). In this research, the NTM has been 
used to obtain information about transit stop locations. 

National Walkability Index (NWI) 
The National Walkability Index is a nationwide spatial data resource provided by the U.S. 
Environmental Protection Agency’s Smart Growth Program. The National Walkability Index 
dataset ranks each U.S. Census block group according to its relative walkability (26). The present 
study utilized walkability scores from this national dataset in the analysis of pedestrian and 
bicyclist crashes that occurred at Maryland intersections. 

OpenStreetMap (OSM) Network 
For the purpose of this study, road geometry and transportation network information, including 
the location of intersections, are extracted from the OpenStreetMap network, which provides 
open-source maps and map data for the world. 

Smart Location Database (SLD) 
First released in 2011, the Smart Location Database (SLD) is a nationwide spatial dataset for the 
U.S available through the U.S. Environmental Protection Agency. The latest version of this 
dataset is the SLD Version 2.0, which was released in 2013 (26,27).

The SLD provides information on land use and built environment characteristics such as 
population and employment densities, land use diversity, urban design attributes, destination 
accessibility, transit accessibility, and socioeconomic/sociodemographic characteristics at the 
census block group level. These characteristics of SLD make it a suitable dataset for examining 
the role of land use and the built environment in the frequency of pedestrian and bicyclist 
crashes. 

Vulnerable Road User (i.e., Pedestrian and Bicyclist) Crash Data 
Data from the Maryland State Government’s open data portal (28) was utilized in this study to 
obtain pedestrian and bicyclist crash data.  

Analytical Methods 
Different statistical models were developed and estimated in the present study to examine the 
role of various key contributing factors including safety risk exposure factors in pedestrian and 
bicyclist crashes that occurred at Maryland intersections. These models are the Poisson model, 
the negative binomial model, the zero-inflated Poisson model, and the zero-inflated negative 
binomial model. The results of these models were compared to identify the most suitable model 
that best fits the data. Due to paper length constraints, the mathematical formulations of these 
models are not reviewed here but can be found in various available sources—including 
Washington et al. (29).  

Pedestrian/Bicyclist Crash Frequency Models 

Model Dependent Variable   
The dependent variable for the statistical models is the frequency of pedestrian and bicyclist 
crashes at a particular intersection within the state of Maryland. The frequency of pedestrian and 
bicyclist crashes is a nonnegative count; therefore, the application of the four formerly-
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mentioned regression models, which address nonnegative count data as a dependent variable, is 
appropriate (see 29). Table 2 tabulates the frequency of pedestrian and bicyclist crashes in 2019 
at Maryland intersections as extracted from the Maryland State Government’s open data portal 
(28). 

TABLE 2 Frequency of Pedestrian/Bicyclist Crashes at Maryland Intersections in 2019 
Number of Pedestrian and Bicyclist 

Crashes at the Intersection 
Frequency Percent 

0 190,412 98.92 
1 1,937 1.01 
2 120 0.06 
3 20 0.01 
4 5 0.00 
5 3 0.00 

Total 192,497 100.00 

The table shows that pedestrian/bicyclist crashes did not occur at a large proportion of 
intersections, leading to a data distribution that is positively skewed with many observations 
being zero. The preponderance of zeros is a common characteristic of count data that represent 
occurrence of an event (in this case, occurrence of a pedestrian/bicyclist crash at an intersection). 

Model Independent Variables   
The independent variables included in the models were selected based on the literature review 
and engineering judgement. These independent variables represent the key contributing factors 
that affect the occurrence of pedestrian and bicyclist crashes, including sociodemographic and 
socioeconomic factors, land use and built environment factors, and design-, traffic-, and travel-
related factors—a few of which characterize the safety risk exposure for pedestrians and 
bicyclists at intersections. Table 3 provides information on the original independent variables 
considered for inclusion in the models. 

TABLE 3 Independent Variables for Pedestrian/Bicyclist Crash Frequency Models 

Variable Description Mean SD 
Data 

Source 
Intersection Design- and Traffic-related Attributes 

Legs Number of intersection approaches 5.61 1.26 OSM 
Traffic Signal Intersection is signalized – 1: yes, 0: no 0.04 0.19 OSM 

Average Level of Traffic 
Stress (LTS) 

Average of LTS rating for all intersection 
approaches 1.62 0.99 LTS 

Average Daily 
Pedestrian/Bicyclist 

Volume 

Average daily pedestrian/bicyclist volume passing 
through the intersection  

(January 1 to January 7, 2019) 
84.93 210.40 

LBS 
(MTI) 

Average Daily Vehicle 
Volume 

Average daily vehicle volume passing through the 
intersection (January 1 to January 7, 2019) 376.31 797.99 

LBS 
(MTI) 

Travel-Related Attributes 
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Automobile Mode Share Automobile commute mode share for CBG 84.61 13.22 ACS 
Public Transportation 

Mode Share 
Public transit commute mode share for CBG 6.12 8.60 ACS 

Nonmotorized Mode 
Share Walk/Bike commute mode share for CBG 2.40 5.44 ACS 

Land Use and Built Environment Attributes 
Road Network Density Total road network density for CBG 11.20 8.35 SLD 

Pedestrian-oriented 
Network Density 

Network density in terms of facility miles of 
pedestrian-oriented links per mile2 of CBG 

8.18 6.73 SLD 

Multimodal Network 
Density 

Network density in terms of facility miles of 
multimodal links per mile2 of CBG 2.01 2.35 SLD 

Intersection 
Density 

Intersection density in terms of automobile-oriented 
intersections per mile2 of CBG 

1.21 2.83 SLD 

Residential Density Gross residential density (housing units/acres) for 
CBG 

2.23 3.46 SLD 

Employment Density Gross employment density (jobs/acres) for CBG 2.34 10.38 SLD 
Activity 
Density 

Gross activity density [(employment + housing 
units)/acres] for CBG 

4.58 11.64 SLD 

Land Use Diversity Employment and household entropy for CBG 0.50 0.22 SLD 
National Walkability 

Index 
Walkability index score for CBG 9.45 4.20 NWI 

Number of Transit Stops Count of bus stops within CBG 2.64 5.41 NTM 
Sociodemographic and Socioeconomic Attributes 

Population Over 65 Percent of population ≥ 65 years old in CBG 16.63 9.27 ACS 
Population Under 18 Percent of population < 18 years old in CBG 21.32 7.45 ACS 

Male Population Percent of the male population in CBG 48.58 6.46 ACS 
African American 

Population 
Percent of African American population in CBG 24.92 27.62 ACS 

Enrolled in School Percent of CBG population enrolled in school 25.01 8.83 ACS 
Unemployed Percent of unemployed population in CBG 3.15 2.96 ACS 

Low-wage Workers Percent of CBG workers earning ≤ $ 1250/month 21.61 4.75 SLD 
Households with No Cars Percent of zero-car households in CBG 6.46 10.45 SLD 

Notes: CBG = Census block group; SD = Standard Deviation; MTI = Maryland Transportation Institute. 

Pearson pairwise correlation coefficients were computed to examine the correlations 
between all original independent variables. To lower the risk of multicollinearity, highly 
correlated variables were not simultaneously included in the models. The final independent 
variables/models were selected by comparing the estimated models based on their Akaike’s 
information criterion (AIC) and the Bayesian information criterion (BIC). Comparison of AIC 
and BIC is a common method of model selection. Various studies employed this method for 
model selection when analyzing pedestrian and bicyclist crashes (7,9,32). The model with the 
smallest AICs and/or BICs is considered a more appropriate model among a set of candidate 
models (30). 

RESULTS AND DISCUSSION 
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Table 4 provides model estimation results for the models developed to relate the frequency of 
pedestrian and bicyclist crashes to various key contributing factors that affect crash occurrence at 
intersections. The following table shows several statistically significant associations between the 
dependent variable (frequency of pedestrian and bicyclist crashes at the intersection) and various 
independent variables representing key contributing factors that have been suggested by previous 
research to impact the occurrence and frequency of pedestrians and bicyclist crashes. 

TABLE 4 Results of the Pedestrian/Bicyclist Crash Frequency Models 
Dependent Variable: Frequency of Pedestrian/Bicyclist Crashes at the Intersection 

Independent Variable 
Type of Model 

Poisson NB ZIP ZINB 
Intersection Design- and Traffic-related Attributes 

Legs (Reference: Number of Intersection Legs = 3 Legs) — — — — 
          Number of Intersection Legs = 4 0.0604 0.0585 0.0093 0.0028 
          Number of Intersection Legs ≥ 5 0.3396*** 0.3441*** 0.2390*** 0.2281*** 
Traffic Signal (1: Signalized Intersection, 0: Otherwise) 1.0143*** 1.0241*** 0.9123*** 0.9351*** 
Average Level of Traffic Stress (LTS) 0.4517*** 0.4331*** 0.2239*** 0.2217*** 
Average Daily Pedestrian/Bicyclist Volume 0.0004*** 0.0006*** 0.0003*** 0.0004*** 
Average Daily Vehicle Volume 0.0002*** 0.0002*** 0.0001*** 0.0001*** 

Travel-related Attributes 
Automobile Mode Share 0.0035 0.0035 0.0036 0.0036 
Public Transportation Mode Share 0.0058* 0.0070** 0.0061* 0.0068** 
Nonmotorized Mode Share 0.0058 0.0045 0.0078** 0.0071* 

Land Use and Built Environment Attributes 
Road Network Density 0.0255*** 0.0262*** 0.0168*** 0.0162*** 
Multimodal Network Density -0.0163** -0.0148* -0.0091 -0.0083
Intersection Density -0.0102 -0.0143** -0.0072 -0.0086
Activity Density 0.0038*** 0.0047*** 0.0038*** 0.0047*** 
Land Use Diversity -0.1385 -0.0571 -0.0451 -0.0385
National Walkability Index 0.1157*** 0.1080*** 0.0688*** 0.0687*** 
Number of Transit Stops -0.0042 -0.0062 -0.0030 -0.0054

Sociodemographic and Socioeconomic Attributes 
Population Over 65 (%) -0.0056* -0.0060** -0.0054** -0.0053*

Population Under 18 (%) -0.0033 -0.0047 -0.0046 -0.0051
Male Population (%) -0.0044 -0.0040 -0.0034 -0.0031
African American Population (%) 0.0022** 0.0018* -0.0002 -0.0002
Enrolled in School (%) -0.0014 -0.0002 -0.0010 -0.0004
Unemployed (%) 0.0032 0.0050 0.0028 0.0035 
Low-wage Workers (%) 0.0166*** 0.0195*** 0.0162*** 0.0177*** 
Households with No Cars (%) 0.0066*** 0.0076*** 0.0067*** 0.0072*** 

Model Goodness of Fit/Information Criteria 

Pseudo R2 0.1968 0.1809 — — 
Akaike’s Information Criterion (AIC) 20141.06 19952.39 19574.20 19466.10 
Bayesian Information Criterion (BIC) 20395.25 20216.75 19848.73 19750.79 
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Dispersion Parameter (Alpha) — 1.9938 1.3203 1.3203 

Likelihood Ratio Chi2 Test of Alpha = 0 — 
chibar2(01) 
= 190.67*** — — 

Number of Observations (i.e., Intersections) = 192,497 

 Notes: *, **, *** = Coefficient is significant at the 10%, 5% and 1% significance level, respectively; — = N/A. 

Intersection Design and Traffic Attributes 
The model estimation results indicate that the frequency of pedestrian and bicyclist crashes at an 
intersection is associated with intersection design- and traffic-related characteristics such as 
number of intersection legs, presence of a traffic signal at the intersection, average level of traffic 
stress (LTS) for the intersection, and average daily pedestrian/bicyclist and vehicle volumes at 
the intersection.  

More specifically, frequency of pedestrian and bicyclist crashes at the intersection is 
positively associated with the intersection having a larger number of approaches (i.e., number of 
intersection legs ≥ 5), as compared to having three approaches (i.e., number of intersection legs = 
3). This result is consistent with findings of previous research suggesting that a higher number of 
intersection approaches contributes to pedestrian and bicycle crashes (9,11). One explanation for 
this finding could be that intersections with fewer approaches create fewer turning conflicts (8). 
Another reason could be that intersections with more approaches may have higher vehicular and 
pedestrian/bicyclist volumes, and thereby are more prone to crashes. 

Further, frequency of pedestrian and bicyclist crashes at the intersection is associated 
with the presence of a traffic signal at the intersection. This result is in line with results of past 
studies that found higher numbers of pedestrian and bicycle crashes as well as higher injury risk 
for bicyclists associated with signalized intersections (6,9,21). With respect to pedestrians, 
findings by Tiwari et al. (31) can offer an explanation for the results obtained in the present 
study. The referenced study found that as signal waiting time increased at signalized 
intersections, pedestrians became impatient and violated the traffic signal (31). Therefore, 
attempting to cross the intersection prematurely by pedestrians at signalized intersections may 
have contributed to the higher frequency of pedestrian-involved crashes at signalized 
intersections within the study area. 

Average LTS for the intersection shows a positive correlation with frequency of 
pedestrian and bicyclist crashes at the intersection. This is a reasonable result considering that 
higher LTS ratings represent conditions that impose higher traffic-related stress on bicyclists 
including interaction with higher speed traffic, close proximity to high speed traffic, and 
multilane traffic (24)—all of which can contribute to bicyclist-involved crashes. 

As expected, frequency of pedestrian and bicyclist crashes is also positively associated 
with the average daily pedestrian/bicyclist volume as well as the average daily vehicle volume 
passing through the intersection. These variables represent safety risk exposure for pedestrians 
and bicyclists in this study and the results corroborate past findings suggesting that increased 
frequencies of pedestrian- and bicyclist-involved crashes at intersections are associated with 
increased levels of risk exposure measures such as vehicle volumes, pedestrian volumes, and 
bicycle volumes (9,18,20). 

Travel Attributes  
The travel-related characteristics of the census block group within which the intersection is 
located also play a role in frequency of pedestrian and bicyclist crashes. The results show that 
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increased frequencies of pedestrian and bicyclist crashes at the intersection are associated with 
the intersection being located in a census block group with higher public transportation and 
nonmotorized mode shares. One explanation can be that these alternative modes of travel may 
lead to increased risk exposure for pedestrians and bicyclists, which can in turn lead to increased 
crash frequency for such vulnerable road users. The results corroborate those of past research 
that found the proportion of commuters who travel to work by transit or nonmotorized modes 
were among the contributing factors to the number of pedestrian crashes (11).  

Land Use and Built Environment Attributes 
The model results also provide evidence for the impact of land use and built environment 
characteristics on frequency of pedestrian and bicyclist crashes. Total road network density 
within the census block group has a statistically significant and positive association with the 
frequency of pedestrian and bicyclist crashes at intersections, whereas multimodal network 
density and intersection density within the census block group have negative associations with 
those crashes.  

Road density has been previously found to be an important factor in pedestrian and 
bicyclist crashes (12). The negative association between multimodal network density and 
frequency of pedestrian and bicyclist crashes (only statistically significant in Poisson and NB 
models) is a reasonable finding, which highlights the role of multimodal network designs in 
increasing safety of vulnerable road users. On the other hand, the negative association between 
the frequency of pedestrian and bicyclist crashes and intersection density (only statistically 
significant in the NB model) seems counter-intuitive, as previous research found that higher 
intersection density was associated with hotzones for pedestrian and bicycle crashes (12). It 
should be noted, however, that this variable represents the density of automobile-oriented 
intersections within the census block group, and automobile-oriented facilities as defined in the 
SLD include facilities on which automobiles are allowed but pedestrians are restricted (27). As 
these characteristics restrict pedestrian and bicyclist activities, they may lead to low or no 
pedestrian/bicyclist volumes at some intersections, thereby reducing the number of pedestrian 
and bicyclist crashes at those intersections.  

Activity density within the census block group is another influential land use factor in 
pedestrian and bicyclist crashes. As expected, increased numbers of pedestrian and bicyclist 
crashes at the intersection are associated with the intersection being located in a census block 
group with increased activity density. This is in line with a previous study that found population 
density as a contributing factor to pedestrian and bicyclist crashes (12). 

The variable representing the National Walkability Index for the census block group also 
exhibits a positive and statistically significant coefficient in all four models. This indicates that 
increased frequencies of pedestrian and bicyclist crashes at the intersection are associated with 
increased walkability within the census block group. This is an expected result since higher 
extents of walkability could mean higher pedestrian activity, which can in turn mean higher risk 
exposure for pedestrians at intersections.  

Sociodemographic and Socioeconomic Attributes 
Socioeconomic and sociodemographic characteristics of the census block group also affect the 
frequency of pedestrian and bicyclist crashes at intersections. Based on the model results, higher 
numbers of pedestrian and bicyclist crashes at the intersection are associated with lower 
percentages of seniors (i.e., population over 65 years old) within the census block group. This 
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result can be due to decreased levels of activity such as walking trips for this age group, which 
can lead to lower levels of exposure and thereby lower numbers of pedestrian crashes. Other 
research has also found pedestrian crashes to be negatively associated with greater proportions of 
population over the age of 65 years (11). Further, higher frequencies of pedestrian and bicyclist 
crashes at intersections are associated with a higher percentage of the African American 
population within the census block group. This result is only statistically significant in the 
Poisson and NB models; nonetheless, it is supported by past findings indicating that percentage 
of the African American population is an important crash risk factor for pedestrian and bicyclist 
crashes (12). Further, based on the results, higher numbers of pedestrian and bicyclist crashes at 
the intersection are associated with increased percentages of low-wage workers and increased 
percentages of households with no private vehicle within the census block group. These findings 
can be an indication of higher usage levels of nonmotorized and public transit modes by 
individuals with a lower socioeconomic status. These alternative modes of travel may result in 
higher risk exposure, leading to higher numbers of pedestrian and bicyclist crashes at 
intersections. The results of the present study are consistent with those of past research that 
found increased income levels were associated with decreased numbers of pedestrian-involved 
crashes (15,32). The results also corroborate previous findings indicating that increased 
proportions of households without a vehicle were associated with increased levels of pedestrian-
involved crashes (15), and higher percentage of households owning two or more vehicles were 
associated with higher risk for pedestrian and bicyclist crashes (12).  

Model Selection   
To arrive at the model that offers the best data fit, several methods have been employed: 

• The main assumption of the Poisson model, which requires the mean of the count
variable to be equal to its variance (29) has been checked. The mean and variance of the 
pedestrian and bicyclist crash frequency variable in this study are 0.0118028 and 0.0141571, 
respectively. Therefore, the variance is larger than the mean, indicating presence of 
overdispersion in data. 

• The likelihood ratio Chi2 test (a postestimation test for the NB model indicating if the
dispersion parameter alpha is equal to zero) has been performed. The result of this test is 
statistically significant (p-value < 0.0001), which suggests that the dependent variable is 
overdispersed and is not adequately estimated by the Poisson model. 

• The AIC and BIC for all the models are computed and compared with each other. The
comparison reveals that the ZINB model has the smallest AICs and BICs among all four models. 

• Consideration has been given to the dispersion parameter (alpha). The dispersion
parameter has been estimated by the NB, ZIP, and ZINB models to be greater than zero (1.9938 
in the NB model and 1.3203 in the ZIP and ZINB models). Thus, due to the data being 
overdispersed, the model developed using these data is better estimated using the ZINB 
modeling methodology compared to the ZIP modeling methodology.  

Thus, it seems that among the four models presented in Table 4, the ZINB model is the 
most suitable model for estimating the dependent variable (frequency of pedestrian/bicyclist 
crashes at Maryland intersections). 

The ZINB model is subsequently used to predict the number of pedestrian and bicycle 
crashes at each intersection to assess crash risk. The model is highly capable of capturing the 
pedestrian/bicycle high-crash-risk intersections. As depicted in Figure 1, the intersections with 
the highest predicted risks cover major locations where the observed crashes occurred. 
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FIGURE 1 ZINB model performance. 

Assessment of Contribution of the Big Location-based Service Data to Model Performance 
To evaluate whether inclusion of the big Location-based Service (LBS) volume data contributes 
to improvement of the models, AIC and BIC of all four models have been computed for with and 
without LBS data scenarios. Table 5 summarizes these information criteria for all four models—
with and without the variables representing the LBS volumes. 

    TABLE 5 Model Improvement Assessment Based on LBS Variables 

Type of Model 

LBS Variable (s) Included 

Poisson 
Model 

NB 
Model 

ZIP  
Model 

ZINB 
Model 

Information Criteria (AIC; BIC) 

Average Daily Pedestrian/Bicyclist Volume 
& Average Daily Vehicle Volume 

20141.06; 
20395.25 

19952.39; 
20216.75 

19574.20; 
19848.73 

19466.10; 
19750.79 

No LBS Volume Variables 20407.44; 
20641.30 

20237.90; 
20481.93 

19651.22;   
19905.41 

19558.50; 
19822.87 

Comparison of the AICs and BICs (Table 5) indicates that for all four model types, the 
model that includes the LBS volume variables has the smallest AIC and BIC values. This means 
that the addition of the LBS volume variables is an improvement to the models. Moreover, the 
appropriateness of the ZINB model with the LBS variables is further emphasized by having the 
smallest AIC and BIC values among all model types. 
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CONCLUSIONS 
This study leverages mobile device location data to conduct a data-driven pedestrian and 
bicyclist safety analysis by estimating the frequency of pedestrian and bicyclist crashes at 
Maryland intersections. The study employs the most commonly used crash frequency modeling 
methodologies including the Poisson, negative binomial (NB), zero-inflated Poisson (ZIP), and 
zero-inflated negative binomial (ZINB) regression techniques.  

The ZINB outperformed the other methodologies and thus was concluded to be the most 
suitable methodology to model the count data in this study (i.e., the frequency of pedestrian and 
bicyclist crashes at a particular intersection).  

Additionally, the results of the study provide evidence that increased frequencies of 
pedestrian and bicyclist crashes at Maryland intersections are associated with the intersection 
having greater than five approaches (i.e., number of intersection legs ≥ 5); the intersection being 
signalized; an increased average LTS for the intersection; and increased average daily pedestrian, 
bicyclist, and vehicle volumes passing through the intersection—which emphasizes the 
contributing role of safety risk exposure factors in pedestrian and bicyclist crashes. Results also 
indicate that increased frequencies of pedestrian and bicyclist crashes at intersections are 
associated with higher public transportation and nonmotorized commute mode shares, higher 
total road network density, higher levels of activity density, a greater extent of walkability, and 
higher percentages of a low-socioeconomic-status population within the census block group.  

Moreover, the results show that inclusion of big location-based service (LBS) 
pedestrian/bicyclist and vehicle volume data in the models improves the performance of the 
models. As consistent and high-quality pedestrian and bicyclist exposure data is often regarded 
as a limitation in safety analysis (9,13,16), this finding highlights the critical role of big LBS 
exposure data in contextualization of pedestrian/bicyclist crash analysis, where the main 
contribution of the present study also lies.  

The present study has a few limitations, which can be addressed in future work. First, 
various other factors with the potential to impact the frequency of pedestrian and bicyclist 
crashes were not included in the analysis. Among such factors are vehicle speeds, parking 
availability, and pavement conditions. Further, a similar crash frequency analysis can also be 
performed for road segments. In addition, future research can conduct safety risk analysis for 
other vulnerable road users such as e-scooter users. 

Nonetheless, the findings of this study contribute to the body of knowledge on safety by 
providing evidence on the role of big LBS exposure data in pedestrian/bicyclist safety analysis. 
These findings highlight the tremendous potential of this emerging source of big data, which 
offers many advantages, including elimination of costly and resource-intensive surveys and 
count collections and potential of generalization to other areas by providing data for the entire 
U.S.  

Knowledge gained from the findings of this study can assist policy decision-makers in 
gaining a deeper understanding of the factors that contribute to pedestrian/bicyclist crashes and 
in developing more effective, data-driven safety interventions and policies to protect these 
vulnerable road users.  
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